Direct evidence for kinetic effects associated with solar wind reconnection

نویسندگان

  • Xiaojun Xu
  • Yi Wang
  • Fengsi Wei
  • Xueshang Feng
  • Xiaohua Deng
  • Yonghui Ma
  • Meng Zhou
  • Ye Pang
  • Hon-Cheng Wong
چکیده

Kinetic effects resulting from the two-fluid physics play a crucial role in the fast collisionless reconnection, which is a process to explosively release massive energy stored in magnetic fields in space and astrophysical plasmas. In-situ observations in the Earth's magnetosphere provide solid consistence with theoretical models on the point that kinetic effects are required in the collisionless reconnection. However, all the observations associated with solar wind reconnection have been analyzed in the context of magnetohydrodynamics (MHD) although a lot of solar wind reconnection exhausts have been reported. Because of the absence of kinetic effects and substantial heating, whether the reconnections are still ongoing when they are detected in the solar wind remains unknown. Here, by dual-spacecraft observations, we report a solar wind reconnection with clear Hall magnetic fields. Its corresponding Alfvenic electron outflow jet, derived from the decouple between ions and electrons, is identified, showing direct evidence for kinetic effects that dominate the collisionless reconnection. The turbulence associated with the exhaust is a kind of background solar wind turbulence, implying that the reconnection generated turbulence has not much developed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mhd-driven Kinetic Dissipation in the Solar Wind and Corona

Mechanisms for the deposition of heat in the lower coronal plasma are discussed, emphasizing recent attempts to reconcile the Ñuid and kinetic perspectives. Structures at magnetohydrodynamic (MHD) scales may drive a nonlinear cascade, preferentially exciting high perpendicular wavenumber Ñuctuations. Relevant dissipative kinetic processes must be identiÐed that can absorb the associated energy ...

متن کامل

Overview on numerical studies of reconnection and dissipation in the solar wind

In this work, recent advances in numerical studies of local reconnection events in the turbulent plasmas are reviewed. Recently [1], the nonlinear dynamics of magnetic reconnection in turbulence has been investigated through high resolution numerical simulations. Both uid (MHD and Hall MHD) and kinetic (HybridVlasov) 2D simulations reveal the presence of a large number of X-type neutral points,...

متن کامل

Global MHD simulations of the strongly driven magnetosphere: Modeling of the transpolar potential saturation

[1] When the magnetosphere-ionosphere system is driven strongly by the solar wind, the ionospheric transpolar potential tends to saturate. The global MHD simulations are used to study this phenomenon and, in particular, the role the ionospheric conductance plays in controlling the dayside reconnection and the transpolar potentials. The feedback of the ionospheric conductance enhanced due to a h...

متن کامل

Journal of Geophysical Research: Space Physics Cassini plasma observations of Saturn’s magnetospheric cusp

The magnetospheric cusp is a funnel-shaped region where shocked solar wind plasma is able to enter the high-latitude magnetosphere via the process of magnetic reconnection. The plasma observations include various cusp signatures such as ion energy dispersions and diamagnetic effects. We present an overview analysis of cusp plasma observations at the Saturnian magnetosphere from the Cassini spac...

متن کامل

Driven reconnection and bursty bulk flows

The energetics of driven magnetic reconnections induced by the deformation of the magnetopause boundary due to the solar wind-magnetosphere interaction are studied. The bursty type reconnection ensues due to the forcing of the magnetopause boundary by the solar wind. For typical plasma parameters in the inner central plasma sheet (ICPS), the magnetic energy release during the reconnection is es...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015